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A general numerical scheme is developed to calculate the motion of shock waves in 
gases with non-uniform properties. The numerical scheme is based on the 
approximate theory of geometrical shock dynamics. The refracted shockfronts at 
both planar and curved gas interfaces are calculated. Both regular and irregular 
refraction patterns are obtained, and in particular, precursor-irregular refraction 
systems are found using the approximate theory. The numerical results are 
compared with recent theoretical and experimental investigations. It is shown that 
the shockfronts determined using geometrical shock dynamics are in good agreement 
with the actual shock waves. 

1. Introduction 
In  our recent paper, Henshaw, Smyth & Schwendeman (1986), a numerical scheme 

was introduced and used to calculate the motion of shock waves in gases, based on 
the approximate theory of geometrical shock dynamics (Whitham 1957, 1959). This 
earlier work dealt with problems for which the shock wave propagated into a gas 
with uniform properties. I n  this paper, we shall be concerned with the more general 
problem of shock-wave motion in gases with non-uniform properties. Of main 
interest will be the bending and distortion of the leading shockfront as it propagates 
into a non-uniform gas. The motion of the leading shockfront will be determined 
using an extended version of the original theory of geometrical shock dynamics. I n  
this approximate theory, the shockfront propagates along rays with its Mach number 
M adjusted in accordance with the changes in the area A of the ray tubes. The A-M 
relation for the extended theory is a differential relation that now contains additional 
terms involving the gradients of the gas non-uniformities. We present the necessary 
elements of the extended theory in $2. 

An efficient method for numerically propagating the shockfront based on the 
extended theory of geometrical shock dynamics is discussed in $3. We represent the 
shockfront by a discrete set of points. Each point is advanced along its unit normal 
with a speed determined by an approximate integration of the differential A-M 
relation along rays. A mesh refinement scheme is employed to maintain a relatively 
even point spacing. This refinement scheme is required since the point spacing tends 
to increase in expansive regions of the shockfront or decrease in compressive regions. 
A smoothing scheme is used periodically to dampen high-frequency numerical 
fluctuations in the shockfront position. 

The present numerical scheme is designed to propagate the leading shockfront in 
two dimensions. Axisymmetric problems are calculated using the present numerical 
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scheme with only minor adjustments required. Shock propagation in three 
dimensions is being considered for future research. 

An important simplification in geometrical shock dynamics is that  the shockfront 
can be calculated directly without explicit knowledge of the flow field behind the 
shock. Numerically, this implies that  only O ( N )  operations (e.g. multiplications) are 
required a t  each time step to propagate a shockfront in two dimensions, where 1 / N  
is average point spacing along the shockfront. A numerical scheme that determines 
the shocks from a calculation of the entire two-dimensional flow field would require 
a t  least O ( N 2 )  operations per time step to gain the same shockfront resolution. These 
two-dimensional flow calculations are possible but time-consuming given the current 
state of computing machines. For shock propagation in three dimensions, geometrical 
shock dynamics would require O ( N 2 )  operations per time step. These calculations are 
also time-consuming but possible, whereas the corresponding calculations for the 
entire three-dimensional flow field do not appear to be feasible given the present 
available computers. 

The numerical scheme discussed in $3  is quite general and may be used to 
propagate shock waves in gases with any prescribed equilibrium distribution of 
sound speed, pressure, density and specific-heat ratio. In  order to demonstrate the 
use of the numerical scheme, however, we shall only consider examples where the 
shock wave travels into a gas with a variable sound-speed distribution. Two such 
problems will be considered in $4: shock-wave refraction a t  a planar interface 
separating two gases with different sound speeds and shock-wave refraction a t  a 
curved interface. 

The results discussed in $4 are compared with data obtained by other theoretical 
and experimental investigations. Analytic solutions to the equations of geometrical 
shock dynamics were obtained by Catherasoo & Sturtevant (1983) for the case of 
shock-wave refraction a t  a planar interface separating two gases with unequal 
constant sound speeds. For this special geometry, the shockfronts are self-similar and 
are composed of centred expansions in Mach number M and ray angle 8 along with 
jumps in M and 8 a t  shock-shocks and a t  the interface. The shockfronts, in this case, 
may be constructed analytically using characteristics and jump conditions a t  
shock-shocks and a t  the interface. This was the method used by Catherasoo & 
Sturtevant. We use these analytic solutions as a check of the accuracy of our more 
flexible numerical scheme presented in $3.  Other results for this problem were 
obtained experimentally by Jahn (1956), Abd-el-Fattah, Henderson & Lozzi (1976) 
and Abd-el-Fattah & Henderson (1978). Catherasoo & Sturtevant showed that these 
experimental results compared favourably with their solutions determined by 
geometrical shock dynamics. In  particular, they showed that their shockfronts 
accurately predicted the transition between regular and irregular refraction systems 
for the actual shocks. 

For certain ranges of the problem parameters, Catherasoo & Sturtevant were 
unable to obtain solutions using their construction method. In  one case, the difficulty 
was due to the formation of a shock-shock on the interface, and in another case, the 
shockfront became normal to the interface so that no rays crossed it. I n  the latter 
case, the limit signalled the onset of a precursor-irregular refraction pattern similar 
to that which is found in geometrical acoustics. The difficulty in their construction 
of solutions is that a provisional choice of the form of the solution is required before 
an iteration procedure can be applied to  confirm this choice and obtain the solution. 
An advantage of our numerical scheme is that no prior knowledge of the solution is 
required. Furthermore, the correct form of the solution can be obtained from our 
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numerical calculations and then verified using Catherasoo & Sturtevant’s procedure. 
Using our numerical scheme, we were able to find solutions in both cases that were 
previously unknown. 

The most interesting resolved case showed the existence of precursor-irregular 
refraction systems for the shockfronts determined using the approximate theory. 
These precursor-irregular refraction systems occur a t  a ‘ slow-fast ’ interface, 
depending on the incident shock strength and interface inclination angle, when the 
transmitted shock travelling in the faster medium ‘runs ahead ’ of the incident shock, 
thus generating a precursor wave that attaches the two shocks (see figure 7 (c, d )  in 
$4, for example). The same shock systems were also observed experimentally by Abd- 
el-Fattah & Henderson (1978). We compare the shock-shock positions found using 
the approximate theory with the experimental triple-point positions, and it is shown 
that the two results are in good agreement. 

The second problem we consider in $4 is shock-wave refraction a t  cylindrical and 
spherical interfaces separating two different gases. These results were motivated by 
recent experiments performed by Haas & Sturtevant (1987) for the same problem. 
Depending on the gas properties, the shock converged or diverged in the cylindrical 
or spherical region. For the divergent case, regular refraction a t  the curved interface 
was observed initially with transition to irregular refraction and a pair of triple 
points (shock-shocks) forming in the surrounding medium a t  later stages of the 
interaction. The convergent case, on the other hand, produced a pronounced shock 
focusing within the cylindrical or spherical regions. These shock-wave refraction 
systems are seen in our numerical study as well. 

2. General theory 
Geometrical shock dynamics is an approximate method for propagating the 

leading shockfront directly without explicitly calculating the flow field behind. The 
theory assumes that points on the shockfront move along rays normal to the shock 
with a speed determined by the changes in the shockfront geometry and by the 
changes in the medium. The numerical scheme (to be discussed in $3)  implements this 
directly and advances the shockfront according to these changes. 

2.1. The A-M relation 

We require some theory for the dependence of the shock Mach number M on the ray 
tube area A and the parameters of the medium (such as the ambient sound speed). 
One such theory is an application of Whitham’s characteristic rule to the one- 
dimensional formulation for flow in a channel (ray tube) with slowly varying cross- 
sectional area A (Whitham 1974). We assume that a shock is travelling down the 
channel with Mach number M into a equilibrium distribution of sound speed a,, 
density pa, pressure pa and specific heat ratio y.  If c measures the distance down the 
channel, the characteristic rule is 

pa F, 
dp du pa2u 1 dA 
d a  d a  u + a A d u  u t a  
--+pa -+- - - = __ 

where p, p, u and a are the pressure, density, velocity and sound speed of the gas just 
behind the shock, respectively. The quantity F in (2.1) is an acceleration due to some 
body force (such as gravity) and a t  equilibrium we have 
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At the moving shock, we can eliminate p ,  p, u and u in favour of M using the normal 
shock conditions : 

2yM2- (y -  1 )  (Y + 1 ) M 2  
P = Po y + l  ’ ( y - 1 ) M 2 + 2 ’  

This procedure results in a differential relation between M ,  A and the various gas 
parameters a t  the moving shock of the form 

where 

MA(M,a)dM 1 dA -+- - = S ( M ,  v), 
M z - 1  da A d a  

A ( M , a ) =  1 + - -  1 - p z ) ( 1 + 2 p + 4 ,  ( Y + l  iu 

(2 .3)  

( y - l ) M Z + 2  
p2 = 2 y M Z - ( y - l ) ’  

and S ( M ,  a) is a source term which contains the gradients of the gas non-uniformities. 
Specifically, we have 

S ( M , a )  = - g ( M , a ) - A - h ( M , a ) - - - J ! - k ( M , a ) -  1 da 1 dP dY 
a, da  Po do da ’ 

where 
2p(M2 - 1 )  

(y-  1 ) M 2  + 2 
g ( M , a )  = I f  

h ( M , a )  = { 2(M2 - 1 ) + p(2yMZ - ( y  - 1 ) )  - 
2 y ( M 2  - 1 )  

Henceforth, we shall refer to (2 .3)  as the A-M relation. 
The differential form of the A-M relation given by ( 2 . 3 )  for a non-uniform medium 

is the same relation as that used by Catherasoo & Sturtevant (1983),  and they 
introduced the extended form (2.4). A relation of the same form was also obtained 
by Collins & Chen (1970, 1971), but there appear to be some errors in the 
coefficients. 

In the original treatment of shock dynamics for uniform media (Whitham 1957), 
a system of partial differential equations was derived based on the shock-ray network 
that related M ,  A and the ray inclination angle 0. The original work used the 
integrated form of (2 .3)  with S = 0 to give an A-M relation of the form 

where 

and A,, and M ,  are some reference ray-tube area and Mach number, respectively. 
Catherasoo & Sturtevant follow this approach to extend the theory to non-uniform 
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FIGURE 1. Shock wave refraction a t  a contact discontinuity. 

media. They obtain a system of partial differential equations in characteristic form 
that also include the parameters of the medium. Then, they solve their partial 
differential equations analytically for various problems. 

As noted earlier, the numerical scheme propagates the shockfront directly and 
bypasses the partial-differential-equation formulation. We require the A-M relation 
in order to determine the propagation speed for each point on the shockfront. The 
direction of propagation is given by the assumption in geometrical shock dynamics 
that points on the shockfront travel along rays normal to the shock. 

2.2. The contact discontinuity 
An important feature of these flows is the presence of jumps in the shock velocity and 
slope that occur at a contact discontinuity in gas properties. Accordingly, an 
important feature of the Catherasoo & Sturtevant theory is a new method and new 
expressions for these jumps. Since jumps equivalent to these will arise in the 
numerical solutions as well, it is useful to summarize this feature of their work. 

The geometry of the situation is shown in figure 1.  The gas interface I is inclined 
a t  an angle 6,. It is assumed, for simplicity, that the ambient sound speed changes 
from a constant value of a,, to ao2 across the interface and that all other gas 
properties are uniform. We see from the various ways of expressing the line segment 
PQ that 

U cc cos8, A cc sin8, 

where 8 = 6'- a,, and if these hold continuously across the interface, then 

- cot 8" d8. --tangdB", -- 
dA dU 

U A 
_-  

By eliminating d8, we have 
dA - dU 
A U 
- = -Cotv-.  

The A-M relation (2.3) with (2.4) for constant p ,  and y takes the form 

1 dM dA duo- 
v2 M A a, 
-- +-+g- - 0, 
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where 

Upon substitution of (2.9) into (2.10) and the observation that dU/U = dM/M 
+da,/a,, we obtain a differential relationship between M and a, that holds across 
the interface ; i t  takes the form 

dM - v2M(U2-gV2)  -- 
da, a, (V2-v2U2)  ’ 

(2.11) 

where U = u,M, V 2  = K 2 - U 2 ,  

K = O’L = constant, i = 1 or 2. 
cos Bi 

If M, and 6,  are known, then the unknown Mach number M, across the-interface may 
be found by integrating (2.11) from a,, to a,,. The unknown ray angle 8, is then given 
since K = constant. 

In  the derivation of (2.11) i t  is assumed that the A-M relation holds even for the 
abrupt changes in U ,  A and a, that occur across the interface. This is reasonable so 
long as the jump in 6 and U is not too large. For large jumps, M ,  (and thus U , )  may 
not be given accurately by (2.11), since the A-M relation was derived assuming a 
gradual change in ray-tube area. An alternative would be to obtain jump conditions 
based on a three-shock theory. However, there is some difficulty due to  the 
overabundance of local three-shock solutions to the full equations of gasdynamics so 
that the use of this theory is an added complication that does not appear to be 
worthwhile in view of the overall approximate theory. 

Catherasoo & Sturtevant use their jump conditions a t  contact discontinuities and 
the usual jump conditions a t  shock-shocks in regions where the gas properties are 
uniform in order to construct solutions using characteristics for a class of problems 
involving a planar interface and a wedge wall boundary. Solutions found in this way 
will be compared with solutions obtained using the more general numerical scheme 
presented in $3, before we move on to  more complicated problems where analytic 
solutions are not available. 

3. Numerical scheme 
In this section, we shall generalize the basic numerical scheme developed in 

Henshaw et al. (1986) for shock-wave motion in a uniform medium in order to 
account for possible non-uniformities in the gas properties ahead of the propagating 
shockfront. We shall stress the new aspects of the numerical scheme in the present 
work and treat only briefly the features discussed in detail in the previous paper. 

The overall time-marching procedure is basically unaltered by the generalization 
to non-uniform media. We represent the shockfront by a discrete set of points. Each 
point is advanced along its unit normal with a velocity U = a, M ,  where the Mach 
number M is determined by numerically integrating the A-M relation (2.3) along 
rays. The integration of (2.3) is the only added feature to  the numerical scheme. 
Points on the shockfront are removed or inserted depending on the local compression 
or expansion along the shockfront using the refinement scheme discussed in our 
previous paper. The same smoothing scheme is also used in order to  dampen high- 
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FIGURE 2. Basic time-marching scheme. 

frequency numerical fluctuations in the shockfront position. A sketch of the 
numerical time-marching scheme is provided in figure 2. 

Points x = (x, y) on the shockfront move along rays with velocity U = a,M. 
Therefore, 

a 
- at x(P7 t )  = .,(P> t)M(P, t )  n(P, t ) ,  (3.1) 

where n = (cos 0, sin 0) is the normal to the shockfront and /3 refers to the particular 
ray. 

Discretization of (3.1) in space yields a system of N ordinary differential equations 
for the discrete shockfront positions x j ( t ) ,  j = 1, . . ., N .  We then integrate the system 
of ordinary differential equations in time using the two-step leap-frog scheme 

x,(t+At) = ~ , ( t - A t ) + 2 A t ~ , , ( t ) 1 M , ( t ) n , ( t ) ,  i = 1,  ..., N ,  (3.2) 

where t = nAt for n = 0, ..., T / A t  and a,,,(t), M,( t )  and n,(t)  are the discrete sound 
speed, Mach number and shockfront normal a t  x,( t ) ,  respectively. The leap-frog 
scheme in (3 .2)  is neutrally stable and thus a smoothing scheme is required in order 
to dampen high-frequency numerical errors that accumulate over long times. We use 
a scheme, given in our previous paper (Henshaw et aE. 1986), that smooths the shock 
position after every 25-50 time steps. We note that numerical integration schemes 
that smooth the shock position continuously could also have been chosen, but these 
schemes were not investigated, since (3.2) has proven to be a reliable choice for all 
our previous calculations. 

The Mach number Ni(t) in (3 .2)  is determined by numerically integrating the AM4 
relation (2.3) along rays. The independent variable u in (2.3) gives the position of the 
shock in the channel. It is convenient to change the variable to t ,  the time a t  which 
a point on the shock has travelled a distance cr along its ray. We then obtain M,(t) 
from the integral 

(3.3) 
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evaluated along the ray x = x,(t) for i = 1, ... , N .  For simplicity, we assume that p ,  
and y are constant, then (3.3) becomes 

wheref(M) is given by (2.6), g = g(M)  is given in (2.4) and A,(t) is the discrete ray- 
tube area. The remaining integral in (3.4) is handled approximately. As a first step, 
we note that if g ( M )  z g(M,)  = constant, we can integrate to give 

(3.5) 

where g(0) = g ( M i ( 0 ) ) .  In the numerical scheme, we can go one step better and take 
g ( M )  x constant a t  each time step. This gives an A-M relation of the form 

where g ( k )  = g ( M , ( k A t ) ) .  Invertingf(M) gives M,( t ) ,  for i = 1 ,  ..., N ,  and we perform 
this inversion numerically. 

The integral in (3.4) may be approximated in a number of ways. The approximation 
given by (3.6) is convenient since the same numerical inversion procedure used to 
determine M , ( t )  when a, is constant (Henshaw et al. 1986) can also be used when 
a, varies. This is possible since M,(t) does not appear in the product on the right-hand 
side of (3.6). Other more complicated schemes may be used to approximate the 
integral in (3.4). However, since g ( M )  varies slowly for  ME[^, OO), the approximate 
A-M relation (3.6) gives sufficient accuracy provided that the change in a,, between 
time steps is not too large. This will be a consideration (discussed later) for problems 
involving a rapid change in a, used to approximate a contact discontinuity. 

Equation (3.4) holds under the assumption that p ,  and y are constant. If pa  is not 
constant, another product term similar to the one involving a, would be included in 
(3.6). If we generalize further and let y vary, then all but the second term in (3.3) 
must be treated approximately. We point out that  this generalization is not 
particularly difficult to handle. However, we shall take the case (3.6) for simplicity 
in the present work. 

We refer to our previous paper for the remaining details of the numerical scheme. 
The discrete shockfront normal ni( t )  required in (3.2) is calculated by differentiating 
two cubic splines fitted to the data (si(t),xi(t)) and (sj(t),yi(t)),j = 1, ..., N ,  where s,(t) 
is the discrete arclength. Initially, the shockfront position and Mach number are 
given a t  t = 0. An explicit one-step scheme is used to  begin the two-step leap-frog 
time-marching scheme. If wall boundaries are present, we require the shockfront to 
be normal to the walls in the numerical scheme. In  expansive regions of the 
shockfront, points tend to spread out, and in compressive regions, points tend to 
clust’er. We set a minimum and a maximum tolerance on the point spacing, and we 
insert or delete points in order to maintain this restriction. 

4. Shock-wave refraction 
We consider two fundamental shock-wave refraction problems. In  $4.1, we discuss 

our calculations for shock-wave refraction a t  a planar interface separating two gases 
with constant unequal sound speeds, and in $4.2, we examine the interaction of plane 
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shock waves a t  curved gas inhomogeneities. For the planar-interface problem, 
theoretical and experimental studies exist and these are compared with our 
numerical results. For the curved-interface problem, we compare our calculations 
with experimental observations only ; we know of no other theoretical results for this 
problem. For both problems, we find that the leading shockfronts determined using 
the approximate theory predict the actual shocks with good accuracy. 

4.1. Shock wave refraction at a planar gas interface 
We calculate the successive shock positions for the problem shown in figure 3. The 
interface I is composed of two planar parts. The lower part is vertical, and the upper 
part is inclined a t  an angle 8, with the horizontal. The incident shockfront S travels 
towards the interface with constant Mach number M,. The sound speed in this region 
is sol. After contact with the interface, the shockfront S' bends to  adjust to the 
different sound speed ao2 on the opposite side of the interface. The curved central 
portion of S' originates from the refraction at the interface corner. At a sufieient 
distance away from the central portion, x' remains planar, travelling with constant 
Mach number M ,  in the upper part and M ,  in the lower part. (The subscript '4' is 
used for later convenience.) The case shown in figure 3 is for ao2 > aol. 

It is possible to construct analytic solutions to the equations of geometrical shock 
dynamics for the problem illustrated in figure 3. These analytic solutions assume a 
discontinuous change in sound speed across the interface. The Catherasoo & 
Sturtevant jump conditions (2.11) are used to relate M and 0 on either side in terms 
of S,, a,, and uo2. In our numerical description, we model the contact discontinuity 
by a continuous distribution of sound speed with a rapid change from a,, to uo2 
across the interface. The width of our interface is 0.025 (using the same scale as in the 
figures). Thus, if M ,  = 5 and At = 0.001, as is the case in a typical calculation, then 
a minimum of approximately 5 time steps are required for a point on the shockfront 
to traverse the interface. This minimum is needed for an accurate integration of the 
A-M relation and it occurs for a head-on interaction. In  this case, we obtain a value 
of M ,  = 3.551 for ao2/ao1 = 2. This compares with the exact value of M ,  = 3.557 
which is found by numerically integrating the jump condition (2.1 1). 

In  figure 4, we display the successive shockfronts calculated using the present 
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FIGURE 4(a ,b) .  For caption see page 394. 
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FIGURE 4(c,d). For caption see page 394. 
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M I  = 5 M, = 5.22 Ma = 4.79 M4 = 3.56 x1 = 26.5' 

e, = oo 8, = 5.60 0, = 16.bD e, = oa x* = -12.8" 

FIGURE 4. Shock-wave refraction for M I  = 5 and uo2/uol = 2: (a) 6, = 60°; ( b )  45'; (c )  30'; 
(d )  0"; ( e )  -45'. 

numerical scheme. The five different values of the interface inclination angle shown, 
S, = 60°, 45", 30°, 0" and -45", are chosen to correspond to five of the many cases 
considered by Catherasoo & Sturtevant in their paper. For all five plots, M ,  = 5.0 
and ao2/uo1 = 2.0. For S, = 60" (figure 4a) ,  the incident planar shock wave meets the 
inclined interface and bends sharply forward to adjust to the larger sound speed on 
the other side. The refracted shockfront across the interface is composed of three 
regions of constant M and 6 separated by two curved portions between regions 2 and 
3, and between 3 and 4 .  These curved portions correspond to the centred expansion 
fans in the analytic solutions. To make this comparison, the dotted lines have been 
drawn in the numerical plots as an estimate of where the fans would fit. The two 
expansion fans are of different type, one belonging to the C, and the other to the 
C- characteristics of the equations of geometrical shock dynamics. Two expansion 
fans are required in this case as waves travel in both directions along the shockfront 
away from the interface corner. The sharp bend in the shockfront seen a t  the inclined 
interface corresponds to the case of regular refraction for the shock. As 6, decreases, 
the C, expansion fan meets the interface and a further decrease in 6, results in the 
presence of a shock-shock in front of the inclined interface (as shown in figures 4 6  
and 4c), where the locus of shock-shock positions is denoted by the dashed lines in 
each figure. These shockfront patterns correspond to irregular refraction systems for 
the shock. Finally, figures 4 ( d )  and 4 ( e )  show a second shock-shock above the 
interface for S, = 0" and -45". The second shock-shock belongs to the opposite 
family relative to the first, and i t  forms after the C- expansion fan meets the 
interface. 

In  figure 4 (and also in figures 6, 7 and lo), we give the exact values of the Mach 
number, ray angle and shock-shock angle computed using characteristics and the 
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appropriate jump conditions. These values are in good agreement with the ones 
found in our numerical calculations. For example, the exact values of M ,  and M ,  for 
the case shown in figure 4(a) are 3.73 and 3.40, respectively. The values found from 
our numerical results are M ,  = 3.73f0.005 and M ,  = 3.40f0.01. Catherasoo & 
Sturtevant also give M ,  6 and x for the cases shown in figure 4; however, they 
incorporate the true value of M ,  = 3.43 as given by one-dimensional gasdynamics 
into their geometrical-shock-dynamics calculations in order to improve their overall 
results. Consequently, their value of M ,  changes to 3.34 for the case shown in figure 
4(a ) ;  the value of M ,  is unaffected. These values compare with M ,  = 3.40 and 
M ,  = 3.56 as given entirely by geometrical shock dynamics. Our numerical results 
give these values as well, since our numerical scheme is based entirely on geometrical 
shock dynamics. For cases shown in figures 6, 7 and 10, where a wall boundary is 
added to the problem, Catherasoo & Sturtevant's results employ geometrical shock 
dynamics only (no added information from one-dimensional gasdynamics is available 
in this case) and our results are in complete agreement with theirs. 

The transition from regular to irregular refraction arises naturally in the theory of 
geometrical shock dynamics for non-uniform media. This transition is seen in figures 
4(a)  and 4 (b )  as 6, is decreased from 60' to 45'. As indicated earlier, the criterion 
for transition for this problem involves the confluence of the leading edge of the 
C, expansion fan and the interface. Let the angle between the C, characteristic in 
the region just behind the inclined interface and the horizontal be given by 6,. This 
angIe defines the leading edge of the C, expansion fan. Regular refraction occurs for 
6, < 6,. In  this case, disturbances along the shockfront originating from the inter- 
face corner cannot propagate ahead of the C, expansion fan to the inclined interface. 
Thus, we have regions of constant M and 0 on each side of the inclined interface 
separated by a sharp bend in the shockfront a t  the interface. This pattern is 
characteristic of regular refraction. For 6, = 6, = 55.7', the edge of the C, expansion 
fan meets the inclined interface and the constant region behind the interface 
vanishes. A further decrease in 6, results in the formation of a shock-shock on the 
inclined interface for the small range 55.7" > 6, > 55.0'. Then, for 6, < 55.0", the 
shock-shock moves away from the interface, which indicates an irregular refraction 
system for the shock. 

For the small range of 6, between 55.0" and 55.7", Catherasoo & Sturtevant had a 
gap in their set of analytic solutions. The numerical calculations, on the other hand, 
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give solutions for all values of 6, with no apparent difficulties. On closer examination, 
there appears to be a sandwich consisting of a contact discontinuity, a shock-shock, 
and then another contact discontinuity, with overshoots in M and 0, across the 
interface. This possibility was not considered by Catherasoo & Sturtevant and could 
now be added to complete the set of analytic solutions for this problem. This 
structure seems peculiar, however, and we suspect that the approximate theory with 
the differential A-M relation (2.10) is stretched too far in this very special case for 
the small range of 6,. In  reality, the layer is probably replaced by some simpler 
structure. 

It is interesting to note that if g ( M )  in (2.10) is taken to be constant (either 
g(M,),  g(M,), or g(M),  where JT is some mean value of M ,  and M,) ,  then the 
complicated structure a t  the interface disappears and there is a simple transition 
from the regular to irregular refraction patterns a t  a single value of 8,. For example, 
if we take g = g(M,) = constant, where M ,  = 5.0, then the transition occurs a t  
6, = 55.4'. Mathematically, this difference between the choice of the original function 
g ( M )  and g = constant concerns the integrability of the Pfaffian form (2.10). If g is 
a function of M ,  then (2.10) is not integrable and any transition from ( M I ,  A , ,  sol) to 
(M,, A,,  aoz)  depends on the integration path, i.e. the assumed relation between A 
and a, during transition. If g = constant, however, (2.10) integrates to give 

where f ( M )  is given in (2.6). In this case, the relation between end points is 
independent ofpath and it is presumably not subject t o  the extreme sensitivity that 
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occurs otherwise for the special case, and the small range of 6,, when a shock-shock 
forms on the interface. 

The refracted shockfronts for ao2 > a,,, the so-called 'slow-fast' interface, are 
displayed in figure 4. We do not discuss the 'fast-slow' interface for this simple 
problem, since the shockfront patterns for the two cases are similar and no new 
information is gained. 

The geometry of the second planar-interface problem that we study is shown in 
figure 5. This problem is similar to the previous one except for the addition of a 
wedge, Exact similarity solutions to the equations of geometrical shock dynamics 
using the Catherasoo & Sturtevant jump conditions across the interface are available 
€or this problem also, and these solutions can be constructed exactly as before where 
we now include the boundary condition a t  the wall. The incident shock wave S 
travels along the wall with constant Mach number M,. The planar interface I is 
inclined with an angle 6,. The wedge angle is given by B,, and the Mach number along 
the inclined wall is denoted by M,. The sound speed on either side of the interface 
is constant and given by a,, and ao2 as before. 

Three typical examples of the shockfronts calculated for the second problem are 
given in figure 6(a-c). In all three cases, ao2 >a,,. For 6, = 60" (figure 6a ,  b ) ,  we see 
a sharp bend in the shockfront a t  the interface, characteristic of regular refraction. 
The refracted shockfront just behind the interface is planar with M = 3.73 and 
8 = 18.3". For 8, = 45" > 18.3" (figure 6 a ) ,  the wedge creates a compressive turning 
of the shock, and thus a shock-shock forms in the region behind the interface. The 
opposition situation is shown in figure 6 ( b )  where 8, = 0" < 18.3". In this case, 
the refracted front adjusts to the wall through a centred expansion in M and 8 along 
the shockfront. Depending on 6, and 8,, it is also possible to obtain irregular refrac- 
tion patterns as shown, for example, in figure 6 ( c ) .  We note that the values given in 
figure 6 all agree with the ones reported by Catherasoo & Sturtevant. 

In all cases considered so far, we have examined the behaviour of the shockfronts 
for fixed initial shock strength and varying interface-wall geometry. It is also 
interesting to study the effect of decreasing the initial shock strength while holding 
the interface-wall geometry fixed. We display the effect of decreasing M ,  in figure 7 .  
The particular interface-wall geometry chosen is 6, = 30" and 8, = 0". For M ,  = 5.0 
(figure 7 a ) ,  a single shock-shock is seen ahead of the interface. The shockfront behind 
the interface is composed of a centred expansion just behind the interface and a 
planar portion near the wall. As M ,  is decreased, the expansion fan grows until it 
meets the wall for M I  = 1.64. The wall Mach number also decreases from M ,  = 2.8 
for M ,  = 5.0 to  M ,  = 1 for M ,  = 1.64. A further decrease in M ,  results in the 
formation of a sonic circle attached to the wall as shown in figure 7 (b ) .  (We determine 
the presence and extent of the sonic circle using our numerical calculations by 
checking the variation of M and 8 along the shockfront.) In this case, the expansion 
along the shockfront is completed prior to the wall (i.e. M decreases to 1 before the 
wall), and the remaining portion of the front is sonic. This is exactly the same 
situation that occurs in the approximate theory for very weak shock diffraction by 
an expansive corner. For M ,  = 1.60, the sonic circle fills the region behind the 
interface, and for M ,  < 1.60 (figure 7 c ) ,  we observe a second shock-shock and a 
precursor wave with M ,  = 1, in region 3 ,  just in front of the interface. The precursor 
wave connects the sonic circle behind the interface with the incident shock through 
a series of two shockshocks of opposite type. We will show that the sonic circle and 
the precursor wave are the same ones as those given in geometrical acoustics. The 
Mach stem between the two shock-shocks is the characteristic opening of a corner in 
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geometrical shock dynamics. We show the limiting acoustic case calculated using our 
numerical scheme with M ,  = 1 in figure 7 ( d ) .  

An independent check of our numerical calculations is made by comparing them 
with the established results for geometrical acoustics. In  figure 8, we show the leading 
fronts as predicted by geometrical acoustics. The transmitted wave is a sonic circle 
that is generated by the interface-wall corner. It moves with speed uo2 in medium 2. 
The transmitted wave, in turn, radiates circular disturbances, centred at the moving 
point P, that propagate back into medium 1 with speed aol. The envelope of these 
circular disturbances forms the planar precursor wave, inclined a t  the Mach angle 

p = arcsin e) 
with respect to the interface, as shown in figure 8. For ao,/ao2 = +, p = 30°, and this 
agrees with the value shown in figure 7 ( c )  and ( d ) .  A corner (shock-shock) is present 
a t  the point Q where the precursor wave meets the incident front. The locus of these 
corner positions forms a line inclined a t  an angle x given by 

x = a7t+;(c91-p). (4.3) 

As noted earlier, the sonic circle and precursor wave in figure 7 ( c )  and ( d )  have M = 1 
and these agree with the corresponding fronts given by geometrical acoustics. The 
corner opens up into a Mach stem in the geometrical-shock-dynamics plot since 
M ,  = 1.5 > 1. For M ,  = 1 (figure 7 4 ,  the Mach stem vanishes and our numerical 
results are in complete agreement with geometrical acoustics. 

The precursor shockfront pattern shown in figure 7 (c) has not been obtained from 
the approximate theory previously. Catherasoo & Sturtevant give analytic solutions 
using the same interface-wall geometry for M ,  between 5.0 and 1.77 in agreement 
with our results. For M ,  < 1.77, they were unable to construct solutions to the 
equations of geometrical shock dynamics. They hypothesized correctly that the limit 
corresponded to the formation of a precursor-irregular refraction pattern. However, 
their method of constructing solutions required some initial choice of the form of the 
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solution, before an iteration procedure could be applied until all of the equations 
(jump conditions and characteristic equations) were satisfied simultaneously. The 
present numerical scheme requires no prior knowledge of the solution. This 
exemplifies one advantage of using the general numerical scheme presented in $3.  
Furthermore, for these relatively simple geometries, we are lead to the correct form 
of the analytic solutions from our numerical calculations. 

Overall, the refracted shockfronts found using geometrical shock dynamics are in 
good agreement with experimental results. A detailed comparison with the 
experimental data of Jahn (1956), Abd-el-Fattah et al. (1976) and Abd-el-Fattah & 
Henderson (1978) may be found in Catherasoo & Sturtevant's paper. Generally 
Catherasoo & Sturtevant showed that geometrical shock dynamics is able to  predict 
the transition from regular to irregular refraction accurately, as well as giving 
accurate triple-point (shock-shock) positions. We ad$ a further comparison between 
our new precursor-irregular refraction patterns and the corresponding ones observed 
experimentally by Abd-el-Fattah & Henderson. 

Abd-el-Fattah & Henderson ( 1978) experimentally examined the interaction of 
plane shocks a t  an inclined gas interface. They studied a slow-fast interface using 
methane and carbon dioxide, so that aoe/aol = 5/3 ideally, but there is always some 
leakage across the interface. They present results obtained for three different initial 
shock strengths, M ,  = 1.12, 1.34 and 2.24, which were representative of their very 
weak group, weak group and strong group, respectively. I n  agreement with our 
results, they observe regular refraction for large S,, with transition to various 
irregular refraction systems occurring for smaller 8,. Their study emphasized the 
many irregular refraction systems possible for this problem, and in particular, they 
observe the same precursor-irregular refraction patterns as the one shown in 
figure 7(c). 

We compare the shock-shock angles found using the approximate theory with the 
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experimental triplelpoint positions in figure 9. We use M, = 1.34 and we assume that 
ao2/ao1 = 513. The two curves in figure 9 give the variation of the two shock-shock 
angles, x1 and x 2 ,  with 6,. (The corresponding shockfront pictures are similar to the 
ones shown in figure 7 a d . )  These curves are found from the analytic solutions 
constructed using characteristics and the appropriate jump conditions. We also find 
x1 and x2 using our numerical scheme and these are plotted in1 figure 9 as well. The 
experimental points were extracted from Abd-el-Fattah & Henderson's paper and 
the error bars give an indication of the reported experimental error. We note the 
good agreement for xl. The agreement for x 2  appears to be best for smaller a,, where 
the difference x2  - 6, is largest. For smaller values of x2  - a,, there is some small 
discrepancy between the theoretical and experimental points. It is possible that this 
difference is due to the difficulty in distinguishing the tJriple-point position in 
photographs when the triple-point is near the interface. This difficulty was suggested 
by Abd-el-Fattah & Henderson in their paper. Overall, the agreement is remarkable 
considering the relatively simple approximate theory involved. 

Before moving on to the next problem, we display a representative picture of the 
refracted shockfronts for ao2 < a,,, the 'fast-slow ' interface (figure 10). For the 
example shown, 6, = 30°, 8, = 0" and ao2/ao1 = 0.5. The shockfront bends sharply 
backwards a t  the interface as the shockfront enters the region of 'slower' gas. The 
adjustment to the boundary condition a t  the wall is made through a shock-shock. 
This pattern is characteristic of all the cases considered for ao2/uo1. 

4.2. Shock-wave refraction at curved gas interfaces 

In  this subsection, we study the case of shock-wave refraction a t  a gaseous interface 
of cylindrical or spherical geometry. These problems contain a t  least one lengthscale, 



404 D. W .  Schwendeman 

1 .o 

0.5 

0 

-0.5 

-1.0 
-1.0 -0.5 0 0.5 1 .o 

- 1.0 -0.5 0 0.5 1 .o 1.5 

FIGURE 11. Shock-wave refraction a t  a cylindrical interface for M ,  = 1.22 and R, = 0.01 ; 
(a)  ao2 = 2.9 (helium-filled cylinder) ; ( b )  a,, = 0.53 (freon-filled cylinder). 

namely, the radius of the cylinder or sphere, as opposed to the two self-similar 
problems previously considered. This fact presents no added difficulty for our 
numerical scheme. The method of constructing solutions using characteristics, 
however, is much more difficult, since there exist regions of non-trivial shock 
geometries and strengths. This problem is motivated by experimental results only ; 
no theoretical results are available. 

Haas & Sturtevant (1987) experimentally investigated the problem of shock-wave 
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refraction by cylinders and spheres. Cylindrical membranes or spherical bubbles were 
filled with helium or freon-22 and suspended in a shock tube. Weak planar shock 
waves (incident Mach number < 1.25) were propagated down the shock tube. The 
shock-wave refraction patterns and interface deflections were observed. For the 
present work, we are mainly interested in the shockfront patterns observed 
experimentally by Haas & Sturtevant. In the case of a helium-filled cylinder or 
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sphere, the incident, shockfront bulged forward as i t  crossed the interface, since the 
sound speed of helium (aHe)  is greater than that of air (uair). Regular refraction at  the 
interface was observed during the initial stages of the interaction. Later, transition 
to irregular refraction was seen as a triple-point (shock-shock) formed near the 
interface in the surrounding air. For the freon-filled cylinder or sphere, the refracted 
shockfront lagged behind the incident front, since afreon < aair. Regular refraction 
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FIGURE 13. Shock-wave refraction a t  a cylindrical interface for M ,  = 1.22 and ao2 = 0.53 : 
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was always present a t  the interface. Inside the cylinder or sphere, strong internally 
diffracted shockfronts were observed. These waves focused and crossed as they 
neared the back of the cylinder or sphere. 

In  their paper, Haas & Sturtevant note that there was leakage across the air-freon 
and air-helium interfaces. For the air-freon interface, this leakage was small, 
resulting in an estimated 4% increase in sound speed a t  most inside the freon 
volumes. In  the case of air-helium, however, they reported significant leakage so that 
the speed of sound inside the helium volumes was decreased by an estimated 20% 
(for the spherical case) depending on the particular run. These estimates were 
obtained by comparing the nearly planar shockfronts near the axis of symmetry with 
the known results for one-dimensional gasdynamics. Later in this section, we shall 
show that the agreement between their experimental results and our numerical 
results is excellent for the air-freon case, and then we shall use our numerical results 
to gain a better estimate of the sound speed inside the cylinders in the air-helium 
case. 

We first treat the case of shock-wave refraction by a cylindrical interface. We use 
the following distribution of sound speed for the present calculations : 

if r-R 2 R,; 

where r is the radial distance from the centre of the cylinder, R is the radius of the 
cylinder and R, measures the width of the cylindrical interface. The sound speed 
inside the cylinder is ao2, and the sound speed outside is normalized to  1. For the first 
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set of results, we take R, = 0.01 to compare with experimental observations, where 
the cylindrical interface is thin. Later, we study shock-wave refraction for varying 

In figure 11 ( a ) ,  we show our results for the helium-filled cylinder. For helium, the 
normalized sound speed ao2 in (4.4) is 2.9, ideally. This value will be reduced when 
comparing more closely with the experiments where a significant leakage across the 
interface was reported. At present, we are interested in the qualitative picture of the 
shockfronts. The incident Mach number is 1.22, which was also used experimentally. 
Near the cylindrical interface, the behaviour of the refracted shockfront is similar 
to those seen for the planar interface. Regular refraction is observed when the 
shockfront first meets the interface, since the interface inclination angle is large. As 
this angle decreases, transition to irregular refraction is observed. These flow features 
were also found experimentally by Haas & Sturtevant. The shockfront emerges from 
the cylinder convex forward. The helium-filled cylinder acts as a divergent lens for 
planar incident shock waves. 

We display the calculations for the freon-filled cylinder in figure 11 (6). For freon- 
22, ao2 = 0.53, and we use M a  = 1.22 as before. The freon-filled cylinder acts as a 
convergent lens in gasdynamics. The central portion, of the incident shockfront 
refracts a t  the cylindrical interface. The refracted shockfront is concave forward. The 
edges of the refracted front are turned more rapidly than the central portion by the 
faster travelling shockfront outside of the cylinder. As a result, two focusing 
shockfront systems (similar to the focusing shockfronts discussed in Henshaw et al. 
1986) are seen inside the cylinder. If ao2 is small enough, as is the case here, the 
shockfronts on the interface cross before the refracted shockfront reaches the back 
of the cylinder. All of these features are observed experimentally by Haas & 
Sturtevant. In particular, they note the strong internally diffracted waves predicted 
by geometrical acoustics. These waves are also given by geometrical shock dynamics. 
They are the rapidly turning edges of the refracted shockfront seen in figure 11 (6). 

A closer comparison with the experiments of Haas & Sturtevant is shown in figure 
12. In each plot, we sketch two shockfronts (dashed curves) from the photographs 
provided by Haas & Sturtevant for the freon-filled cylinder (figure 12a) and for the 
helium-filled cylinder (figure 126). The incident Mach number in both cases is M ,  = 
1.22, and this value is used in the numerical calculations also. The corresponding 
numerical shockfronts (solid curves) are plotted a t  the integration step when they 
overlap with the experimental shockfront in the undisturbed region away from the 
cylinder. For the freon-filled cylinder, we use the ideal value of ao2 = 0.53, and we see 
that the agreement between the numerical and experimental shockfronts is excellent. 
The leakage a t  the freon-air interface was small in the experiments, and thus we 
expect this good agreement. For the helium-filled cylinder, the numerical results 
agree with the experimental shockfronts when a sound speed less than the ideal value 
for helium is used. Moreover, the two numerical shockfronts are obtained from 
separate calculations using two different values of uo2. For the shockfront on the left, 
ao2 = 1.7, and for the one on the right, uo2 = 2.2. Thus, we see that leakage a t  the 
helium-air interface for the cylinder was even greater than the 20 YO reported for t)he 
sphere, and since each experimental shockfront was from a different run, we find that 
the deviation in sound speed for each run was also large. 

A further study of the refraction process is obtained by varying the interface 
thickness R, in (4.4). This study has not been performed experimentally. In figure 13, 
we vary R, from R, = 0.1 to R, = R = 0.5. The incident Mach number is M ,  = 1.22 
and the sound speed inside the cylinder is uo2 = 0.53. The case of a sharp jump in 

RP 
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FIGURE 14. Shock-wave refraction at  a spherical interface for M ,  = 1.25 and R, = 0.01 : 
(a )  ao2 = 2.9 (helium-filled sphere) ; ( b )  ao2 = 0.53 (freon-filled sphere). 

sound speed at the cylindrical interface (R, = 0.01) is shown in figure 11 (b). In all 
three pictures, we plot a circle of radius R for reference. For R, = 0.01 (figure l i b ) ,  
we noted the strong internally diffracted waves inside the cylinder. These waves 
crossed near the back of the cylinder. As R, is increased, these waves are less 
pronounced, resulting in a weaker focus for the refracted shockfront near the back 
of the cylinder. The three different values of R, shown in figure 13 (a-c) give the three 
different types of focusing. For R, = 0.1, the refracted shockfronts cross near the 
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back of the cylinder. The refracted shockfronts for R, = 0.25 emerge from the 
cylinder uncrossed and later focus to form a single shock-shock on the axis of 
symmetry. Farther downstream the single shock-shock opens up to form a pair of 
shock-shocks with a joining Mach stem. The weakest focusing is observed for 
R, = R = 0.5 (figure 13c) as the refracted front forms a pair of shock-shocks and a 
Mach stem initially behind the cylinder. 

For completeness, we show the shock-wave refraction patterns given a t  a spherical 
interface. The variation in sound speed given by (4.4) for the cylinder case is also used 
here. The diverging case (ao2 = 2.9) is displayed in figure 14(a), and the converging 
case (aoz = 0.53) is given in figure 14(b). We take M ,  = 1.25 for both plots. These 
cases were also considered experimentally by Haas & Sturtevant. The refraction 
process for the sphere is found to be very similar to  that of the cylinder (figure 11). 
Photographs of the refraction process for the actual shock waves show this similarity 
as well. 
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